Dynamical Systems on Hilbert C ∗ - Modules ∗
نویسنده
چکیده
We investigate the generalized derivations and show that every generalized derivation on a simple Hilbert C∗-module either is closable or has a dense range. We also describe dynamical systems on a full Hilbert C∗-module M over a C∗-algebra A as a oneparameter group of unitaries on M and prove that if α : R → U(M) is a dynamical system, where U(M) denotes the set of all unitary operator on M, then we can correspond a C∗dynamical system α ′ on A such that if δ and d are the infinitesimal generators of α and α ′ respectively, then δ is a d-derivation.
منابع مشابه
Dilations for $C^ast$-dynamical systems with abelian groups on Hilbert $C^ast$-modules
In this paper we investigate the dilations of completely positive definite representations of (C^ast)-dynamical systems with abelian groups on Hilbert (C^ast)-modules. We show that if ((mathcal{A}, G,alpha)) is a (C^ast)-dynamical system with (G) an abelian group, then every completely positive definite covariant representation ((pi,varphi,E)) of ((mathcal{A}, G,alpha)) on a Hilbert ...
متن کاملMulti-Frame Vectors for Unitary Systems in Hilbert $C^{*}$-modules
In this paper, we focus on the structured multi-frame vectors in Hilbert $C^*$-modules. More precisely, it will be shown that the set of all complete multi-frame vectors for a unitary system can be parameterized by the set of all surjective operators, in the local commutant. Similar results hold for the set of all complete wandering vectors and complete multi-Riesz vectors, when the surjective ...
متن کامل*-frames for operators on Hilbert modules
$K$-frames which are generalization of frames on Hilbert spaces, were introduced to study atomic systems with respect to a bounded linear operator. In this paper, $*$-$K$-frames on Hilbert $C^*$-modules, as a generalization of $K$-frames, are introduced and some of their properties are obtained. Then some relations between $*$-$K$-frames and $*$-atomic systems with respect to a...
متن کاملThe study on controlled g-frames and controlled fusion frames in Hilbert C*-modules
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...
متن کاملG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
متن کامل